References
(1) Lien-Teh, W. A Treatise on Pneumonic Plague; League of Nations. Health Organisation: Geneva, 1926.
(2) Panagiotakopulu, E. Pharaonic Egypt and the Origins of Plague. J. Biogeogr. 2004, 31 (2), 269–275. https://doi.org/10.1046/j.0305-0270.2003.01009.x.
(3) Susat, J.; Lübke, H.; Immel, A.; Brinker, U.; Macāne, A.; Meadows, J.; Steer, B.; Tholey, A.; Zagorska, I.; Gerhards, G.; Schmölcke, U.; Kalniņš, M.; Franke, A.; Pētersone-Gordina, E.; Teßman, B.; Tõrv, M.; Schreiber, S.; Andree, C.; Bērziņš, V.; Nebel, A.; Krause-Kyora, B. A 5,000-Year-Old Hunter-Gatherer Already Plagued by Yersinia Pestis. Cell Rep. 2021, 35 (13), 109278. https://doi.org/10.1016/j.celrep.2021.109278.
(4) Smego, R. A.; Frean, J.; Koornhof, H. J. Yersiniosis I: Microbiological and Clinicoepidemiological Aspects of Plague and Non-Plague Yersinia Infections. Eur. J. Clin. Microbiol. Infect. Dis. 1999, 18 (1), 1–15. https://doi.org/10.1007/s100960050219.
(5) Demeure, C. E.; Dussurget, O.; Mas Fiol, G.; Le Guern, A.-S.; Savin, C.; Pizarro-Cerdá, J. Yersinia Pestis and Plague: An Updated View on Evolution, Virulence Determinants, Immune Subversion, Vaccination, and Diagnostics. Genes Immun. 2019, 20 (5), 357–370. https://doi.org/10.1038/s41435-019-0065-0.
(6) Chouikha, I.; Hinnebusch, B. J. Silencing Urease: A Key Evolutionary Step That Facilitated the Adaptation of Yersinia Pestis to the Flea-Borne Transmission Route. Proc. Natl. Acad. Sci. 2014, 111 (52), 18709–18714. https://doi.org/10.1073/pnas.1413209111.
(7) Hinnebusch, B. J.; Rudolph, A. E.; Cherepanov, P.; Dixon, J. E.; Schwan, T. G.; Forsberg, A. Role of Yersinia Murine Toxin in Survival of Yersinia Pestis in the Midgut of the Flea Vector. Science 2002, 296 (5568), 733–735. https://doi.org/10.1126/science.1069972.
(8) Hinnebusch, B. J.; Fischer, E. R.; Schwan, T. G. Evaluation of the Role of the Yersinia Pestis Plasminogen Activator and Other Plasmid‐Encoded Factors in Temperature‐Dependent Blockage of the Flea. J. Infect. Dis. 1998, 178 (5), 1406–1415. https://doi.org/10.1086/314456.
(9) Appleby, A. B. The Disappearance of Plague: A Continuing Puzzle. Econ. Hist. Rev. 1980, 33 (2), 161–173. https://doi.org/10.2307/2595837.
(10) Keeling, M. J.; Gilligan, C. A. Bubonic Plague: A Metapopulation Model of a Zoonosis. Proc. R. Soc. B Biol. Sci. 2000, 267 (1458), 2219–2230.
(11) Yersin, A. La Peste Bubonique A Hong-Kong. In Annales de l’Institut Pasteur (Journal De Microbiologie); Paris : Masson, 1894; Vol. 8, pp 662–667.
(12) Yersinia Pestis: Retrospective and Perspective; Yang, R., Anisimov, A., Eds.; Advances in Experimental Medicine and Biology; Springer Netherlands: Dordrecht, 2016; Vol. 918. https://doi.org/10.1007/978-94-024-0890-4.
(13) Kaufmann, S. H. E.; Schaible, U. E. 100th Anniversary of Robert Koch’s Nobel Prize for the Discovery of the Tubercle Bacillus. Trends Microbiol. 2005, 13 (10), 469–475. https://doi.org/10.1016/j.tim.2005.08.003.
(14) Butler, T. Plague and Other Yersinia Infections; Springer US: Boston, MA, 1983.
(15) Bacot, A. W.; Martin, C. J. LXVII. Observations on the Mechanism of the Transmission of Plague by Fleas. J. Hyg. (Lond.) 1914, 13 (Suppl), 423–439.
(16) Bacot, A. W. LXXXI. Further Notes on the Mechanism of the Transmission of Plague by Fleas. J. Hyg. (Lond.) 1915, 14 (Suppl), 774-776.3.
(17) Spyrou, M. A.; Tukhbatova, R. I.; Wang, C.-C.; Valtueña, A. A.; Lankapalli, A. K.; Kondrashin, V. V.; Tsybin, V. A.; Khokhlov, A.; Kühnert, D.; Herbig, A.; Bos, K. I.; Krause, J. Analysis of 3800-Year-Old Yersinia Pestis Genomes Suggests Bronze Age Origin for Bubonic Plague. Nat. Commun. 2018, 9 (1), 2234. https://doi.org/10.1038/s41467-018-04550-9.
(18) Sun, Y.-C.; Jarrett, C. O.; Bosio, C. F.; Hinnebusch, B. J. Retracing the Evolutionary Path That Led to Flea-Borne Transmission of Yersinia Pestis. Cell Host Microbe 2014, 15 (5), 578–586. https://doi.org/10.1016/j.chom.2014.04.003.
(19) Hinnebusch, B. J.; Jarrett, C. O.; Bland, D. M. “Fleaing” the Plague: Adaptations of Yersinia Pestis to Its Insect Vector That Lead to Transmission. Annu. Rev. Microbiol. 2017, 71 (1), 215–232. https://doi.org/10.1146/annurev-micro-090816-093521.
(20) Selvy, P. E.; Lavieri, R. R.; Lindsley, C. W.; Brown, H. A. Phospholipase D: Enzymology, Functionality, and Chemical Modulation. Chem. Rev. 2011, 111 (10), 6064–6119. https://doi.org/10.1021/cr200296t.
(21) EC 3.1.4.4 – phospholipase D – BRENDA Enzyme Database https://www.brenda-enzymes.org/enzyme.php?ecno=3.1.4.4 (accessed 2022 -04 -20).
(22) PubChem. Phosphatidylcholine(24:1/14:1) https://pubchem.ncbi.nlm.nih.gov/compound/53479489 (accessed 2022 -04 -26).
(23) PubChem. Phosphatidylethanolamine https://pubchem.ncbi.nlm.nih.gov/compound/5327011 (accessed 2022 -04 -26).
(24) RCSB Protein Data Bank. RCSB PDB – 1F0I: THE FIRST CRYSTAL STRUCTURE OF A PHOSPHOLIPASE D https://www.rcsb.org/structure/1F0I (accessed 2022 -04 -26).
(25) Bland, D. M.; Miarinjara, A.; Bosio, C. F.; Calarco, J.; Hinnebusch, B. J. Acquisition of Yersinia Murine Toxin Enabled Yersinia Pestis to Expand the Range of Mammalian Hosts That Sustain Flea-Borne Plague. PLoS Pathog. 2021, 17 (10), e1009995. https://doi.org/10.1371/journal.ppat.1009995.
(26) Hinnebusch, J.; Cherepanov, P.; Du, Y.; Rudolph, A.; Dixon, J. D.; Schwan, T.; Forsberg, Å. Murine Toxin of Yersinia Pestis Shows Phospholipase D Activity but Is Not Required for Virulence in Mice. Int. J. Med. Microbiol. 2000, 290 (4), 483–487. https://doi.org/10.1016/S1438-4221(00)80070-3.
(27) Brown, S. D.; Montie, T. C. Beta-Adrenergic Blocking Activity of Yersinia Pestis Murine Toxin. Infect. Immun. 1977, 18 (1), 85–93. https://doi.org/10.1128/iai.18.1.85-93.1977.
(28) Fan, Y.; Zhou, Y.; Feng, N.; Wang, Q.; Tian, G.; Wu, X.; Liu, Z.; Bi, Y.; Yang, R.; Wang, X. Recombinant Murine Toxin from Yersinia Pestis Shows High Toxicity and β-Adrenergic Blocking Activity in Mice. Microbes Infect. 2016, 18 (5), 329–335. https://doi.org/10.1016/j.micinf.2016.01.001.
(29) Hinnebusch, B. J.; Perry, R. D.; Schwan, T. G. Role of the Yersinia Pestis Hemin Storage (Hms) Locus in the Transmission of Plague by Fleas. Science 1996, 273 (5273), 367–370. https://doi.org/10.1126/science.273.5273.367.
(30) Perry, R. D.; Bobrov, A. G.; Kirillina, O.; Jones, H. A.; Pedersen, L.; Abney, J.; Fetherston, J. D. Temperature Regulation of the Hemin Storage (Hms+) Phenotype of Yersinia Pestis Is Posttranscriptional. J. Bacteriol. 2004, 186 (6), 1638–1647. https://doi.org/10.1128/JB.186.6.1638-1647.2004.
(31) Surgalla, M. J.; Beesley, E. D. Congo Red-Agar Plating Medium for Detecting Pigmentation in Pasteurella Pestis. Appl. Microbiol. 1969, 18 (5), 834–837.
(32) Hare, J. M.; McDonough, K. A. High-Frequency RecA-Dependent and -Independent Mechanisms of Congo Red Binding Mutations in Yersinia Pestis. J. Bacteriol. 1999, 181 (16), 4896–4904. https://doi.org/10.1128/JB.181.16.4896-4904.1999.
(33) KEGG PATHWAY: Biofilm formation – Escherichia coli + Reference pathway https://www.genome.jp/pathway/map02026+K11936 (accessed 2022 -04 -26).
(34) Darby, C. Uniquely Insidious: Yersinia Pestis Biofilms. Trends Microbiol. 2008, 16 (4), 158–164. https://doi.org/10.1016/j.tim.2008.01.005.
(35) Gerke, C.; Kraft, A.; Süßmuth, R.; Schweitzer, O.; Götz, F. Characterization of TheN-Acetylglucosaminyltransferase Activity Involved in the Biosynthesis of the Staphylococcus EpidermidisPolysaccharide Intercellular Adhesin*. J. Biol. Chem. 1998, 273 (29), 18586–18593. https://doi.org/10.1074/jbc.273.29.18586.
(36) Forman, S.; Bobrov, A. G.; Kirillina, O.; Craig, S. K.; Abney, J.; Fetherston, J. D.; Perry, R. D. Identification of Critical Amino Acid Residues in the Plague Biofilm Hms Proteins. Microbiology 2006, 152 (11), 3399–3410. https://doi.org/10.1099/mic.0.29224-0.
(37) Mack, D.; Fischer, W.; Krokotsch, A.; Leopold, K.; Hartmann, R.; Egge, H.; Laufs, R. The Intercellular Adhesin Involved in Biofilm Accumulation of Staphylococcus Epidermidis Is a Linear Beta-1,6-Linked Glucosaminoglycan: Purification and Structural Analysis. J. Bacteriol. 1996, 178 (1), 175–183. https://doi.org/10.1128/jb.178.1.175-183.1996.
(38) Flemming, H.-C.; Wingender, J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010, 8 (9), 623–633. https://doi.org/10.1038/nrmicro2415.
(39) Costerton, J. W.; Lewandowski, Z.; Caldwell, D. E.; Korber, D. R.; Lappin-Scott, H. M. Microbial Biofilms. Annu. Rev. Microbiol. 1995, 49 (1), 711–745. https://doi.org/10.1146/annurev.mi.49.100195.003431.
(40) Bobrov, A. G.; Kirillina, O.; Ryjenkov, D. A.; Waters, C. M.; Price, P. A.; Fetherston, J. D.; Mack, D.; Goldman, W. E.; Gomelsky, M.; Perry, R. D. Systematic Analysis of Cyclic Di-GMP Signalling Enzymes and Their Role in Biofilm Formation and Virulence in Yersinia Pestis. Mol. Microbiol. 2011, 79 (2), 533–551. https://doi.org/10.1111/j.1365-2958.2010.07470.x.
(41) Sun, Y.-C.; Koumoutsi, A.; Jarrett, C.; Lawrence, K.; Gherardini, F. C.; Darby, C.; Hinnebusch, B. J. Differential Control of Yersinia Pestis Biofilm Formation In Vitro and in the Flea Vector by Two C-Di-GMP Diguanylate Cyclases. PLOS ONE 2011, 6 (4), e19267. https://doi.org/10.1371/journal.pone.0019267.
(42) Cotter, P. A.; Stibitz, S. C-Di-GMP-Mediated Regulation of Virulence and Biofilm Formation. Curr. Opin. Microbiol. 2007, 10 (1), 17–23. https://doi.org/10.1016/j.mib.2006.12.006.
(43) PubChem. cyclic di-GMP https://pubchem.ncbi.nlm.nih.gov/compound/135440063 (accessed 2022 -04 -27).
(44) Staggs, T. M.; Perry, R. D. Identification and Cloning of a Fur Regulatory Gene in Yersinia Pestis. J. Bacteriol. 1991, 173 (2), 417–425.
(45) Sun, F.; Gao, H.; Zhang, Y.; Wang, L.; Fang, N.; Tan, Y.; Guo, Z.; Xia, P.; Zhou, D.; Yang, R. Fur Is a Repressor of Biofilm Formation in Yersinia Pestis. PLOS ONE 2012, 7 (12), e52392. https://doi.org/10.1371/journal.pone.0052392.
(46) Guo, X.-P.; Sun, Y.-C. New Insights into the Non-Orthodox Two Component Rcs Phosphorelay System. Front. Microbiol. 2017, 8.
(47) Fang, N.; Yang, H.; Fang, H.; Liu, L.; Zhang, Y.; Wang, L.; Han, Y.; Zhou, D.; Yang, R. RcsAB Is a Major Repressor of Yersinia Biofilm Development through Directly Acting on HmsCDE, HmsT and HmsHFRS. Sci. Rep. 2015, 5 (1), 9566. https://doi.org/10.1038/srep09566.
(48) Zahorchak, R. J.; Charnetzky, W. T.; Little, R. V.; Brubaker, R. R. Consequences of Ca2+ Deficiency on Macromolecular Synthesis and Adenylate Energy Charge in Yersinia Pestis. J. Bacteriol. 1979, 139 (3), 792–799.
(49) Kupferberg, L. L.; Higuchi, K. ROLE OF CALCIUM IONS IN THE STIMULATION OF GROWTH OF VIRULENT STRAINS OF PASTEURELLA PESTIS. J. Bacteriol. 1958, 76 (1), 120–121.
(50) Smith, J. L.; Higuchi, K. STUDIES ON THE NUTRITION AND PHYSIOLOGY OF PASTEURELLA PESTIS. J. Bacteriol. 1959, 77 (5), 604–608.
(51) Charnetzky, W. T.; Brubaker, R. R. RNA Synthesis in Yersinia Pestis During Growth Restriction in Calcium-Deficient Medium. J. Bacteriol. 1982, 149 (3), 1089–1095.
(52) Cornelis, G. R. The Yersinia Ysc–Yop “Type III” Weaponry. Nat. Rev. Mol. Cell Biol. 2002, 3 (10), 742. https://doi.org/10.1038/nrm932.
(53) Rosqvist, R.; Magnusson, K. E.; Wolf-Watz, H. Target Cell Contact Triggers Expression and Polarized Transfer of Yersinia YopE Cytotoxin into Mammalian Cells. EMBO J. 1994, 13 (4), 964–972.
(54) Pugsley, A. P. The Complete General Secretory Pathway in Gram-Negative Bacteria. Microbiol. Rev. 1993, 57 (1), 50–108.
(55) Hueck, C. J. Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants. Microbiol. Mol. Biol. Rev. 1998, 62 (2), 379–433. https://doi.org/10.1128/MMBR.62.2.379-433.1998.
(56) Galán, J. E.; Collmer, A. Type III Secretion Machines: Bacterial Devices for Protein Delivery into Host Cells. Science 1999, 284 (5418), 1322–1328. https://doi.org/10.1126/science.284.5418.1322.
(57) Anderson, D. M.; Schneewind, O. A MRNA Signal for the Type III Secretion of Yop Proteins by Yersinia Enterocolitica. Science 1997, 278 (5340), 1140–1143. https://doi.org/10.1126/science.278.5340.1140.
(58) Michiels, T.; Vanooteghem, J. C.; Lambert de Rouvroit, C.; China, B.; Gustin, A.; Boudry, P.; Cornelis, G. R. Analysis of VirC, an Operon Involved in the Secretion of Yop Proteins by Yersinia Enterocolitica. J. Bacteriol. 1991, 173 (16), 4994–5009. https://doi.org/10.1128/jb.173.16.4994-5009.1991.
(59) Michiels, T.; Wattiau, P.; Brasseur, R.; Ruysschaert, J. M.; Cornelis, G. Secretion of Yop Proteins by Yersiniae. Infect. Immun. 1990, 58 (9), 2840–2849. https://doi.org/10.1128/iai.58.9.2840-2849.1990.
(60) Cornelis, G.; Sluiters, C.; de Rouvroit, C. L.; Michiels, T. Homology between VirF, the Transcriptional Activator of the Yersinia Virulence Regulon, and AraC, the Escherichia Coli Arabinose Operon Regulator. J. Bacteriol. 1989, 171 (1), 254–262. https://doi.org/10.1128/jb.171.1.254-262.1989.
(61) Yother, J.; Chamness, T. W.; Goguen, J. D. Temperature-Controlled Plasmid Regulon Associated with Low Calcium Response in Yersinia Pestis. J. Bacteriol. 1986, 165 (2), 443–447. https://doi.org/10.1128/jb.165.2.443-447.1986.
(62) Haiko, J.; Westerlund-Wikström, B. The Role of the Bacterial Flagellum in Adhesion and Virulence. Biology 2013, 2 (4), 1242–1267. https://doi.org/10.3390/biology2041242.
(63) Cornelis, G. R.; Wolf-Watz, H. The Yersinia Yop Virulon: A Bacterial System for Subverting Eukaryotic Cells. Mol. Microbiol. 1997, 23 (5), 861–867. https://doi.org/10.1046/j.1365-2958.1997.2731623.x.
(64) EC 7.4.2.3 – mitochondrial protein-transporting ATPase – BRENDA Enzyme Database https://brenda-enzymes.info/enzyme.php?ecno=7.4.2.3 (accessed 2022 -04 -29).
(65) Voos, W.; Martin, H.; Krimmer, T.; Pfanner, N. Mechanisms of Protein Translocation into Mitochondria. Biochim. Biophys. Acta BBA – Rev. Biomembr. 1999, 1422 (3), 235–254. https://doi.org/10.1016/S0304-4157(99)00007-6.
(66) EC 7.4.2.8 – protein-secreting ATPase and Organism(s) Yersinia pestis^Yersinia sp. – BRENDA Enzyme Database https://www.brenda-enzymes.org/enzyme.php?ecno=7.4.2.8&Suchword=&reference=&UniProtAcc=&organism%5B%5D=Yersinia+pestis&organism%5B%5D=Yersinia+sp.&show_tm=0 (accessed 2022 -04 -29).
(67) Wilharm, G.; Dittmann, S.; Schmid, A.; Heesemann, J. On the Role of Specific Chaperones, the Specific ATPase, and the Proton Motive Force in Type III Secretion. Int. J. Med. Microbiol. 2007, 297 (1), 27–36. https://doi.org/10.1016/j.ijmm.2006.10.003.
(68) Hoiczyk, E.; Blobel, G. Polymerization of a Single Protein of the Pathogen Yersinia Enterocolitica into Needles Punctures Eukaryotic Cells. Proc. Natl. Acad. Sci. 2001, 98 (8), 4669–4674. https://doi.org/10.1073/pnas.071065798.
(69) Koster, M.; Bitter, W.; De Cock, H.; Allaoui, A.; Cornelis, G. R.; Tommassen, J. The Outer Membrane Component, YscC, of the Yop Secretion Machinery of Yersinia Enterocolitica Forms a Ring-Shaped Multimeric Complex. Mol. Microbiol. 1997, 26 (4), 789–797. https://doi.org/10.1046/j.1365-2958.1997.6141981.x.
(70) Wattiau, P.; Bernier, B.; Deslée, P.; Michiels, T.; Cornelis, G. R. Individual Chaperones Required for Yop Secretion by Yersinia. Proc. Natl. Acad. Sci. 1994, 91 (22), 10493–10497. https://doi.org/10.1073/pnas.91.22.10493.
(71) Cornelis, G. R.; Boland, A.; Boyd, A. P.; Geuijen, C.; Iriarte, M.; Neyt, C.; Sory, M.-P.; Stainier, I. The Virulence Plasmid of Yersinia, an Antihost Genome. Microbiol. Mol. Biol. Rev. 1998, 62 (4), 1315–1352. https://doi.org/10.1128/MMBR.62.4.1315-1352.1998.
(72) Neyt, C.; Cornelis, G. R. Role of SycD, the Chaperone of the Yersinia Yop Translocators YopB and YopD. Mol. Microbiol. 1999, 31 (1), 143–156. https://doi.org/10.1046/j.1365-2958.1999.01154.x.
(73) EC 3.1.3.48 – protein-tyrosine-phosphatase – BRENDA Enzyme Database https://brenda-enzymes.info/enzyme.php?ecno=3.1.3.48 (accessed 2022 -04 -28).
(74) Wattiau, P.; Woestyn, S.; Cornelis, G. R. Customized Secretion Chaperones in Pathogenic Bacteria. Mol. Microbiol. 1996, 20 (2), 255–262. https://doi.org/10.1111/j.1365-2958.1996.tb02614.x.
(75) Guan, K.; Dixon, J. E. Protein Tyrosine Phosphatase Activity of an Essential Virulence Determinant in Yersinia. Science 1990, 249 (4968), 553–556. https://doi.org/10.1126/science.2166336.
(76) Phan, J.; Lee, K.; Cherry, S.; Tropea, J. E.; Burke, Terrence R.; Waugh, D. S. High-Resolution Structure of the Yersinia Pestis Protein Tyrosine Phosphatase YopH in Complex with a Phosphotyrosyl Mimetic-Containing Hexapeptide. Biochemistry 2003, 42 (45), 13113–13121. https://doi.org/10.1021/bi030156m.
(77) Bliska, J. B.; Clemens, J. C.; Dixon, J. E.; Falkow, S. The Yersinia Tyrosine Phosphatase: Specificity of a Bacterial Virulence Determinant for Phosphoproteins in the J774A.1 Macrophage. J. Exp. Med. 1992, 176 (6), 1625–1630. https://doi.org/10.1084/jem.176.6.1625.
(78) Andersson, K.; Carballeira, N.; Magnusson, K.-E.; Persson, C.; Stendahl, O.; Wolf-Watz, H.; Fällman, M. YopH of Yersinia Pseudotuberculosis Interrupts Early Phosphotyrosine Signalling Associated with Phagocytosis. Mol. Microbiol. 1996, 20 (5), 1057–1069. https://doi.org/10.1111/j.1365-2958.1996.tb02546.x.
(79) Identification of P130Cas as a Substrate of Yersinia YopH (Yop51), a Bacterial Protein Tyrosine Phosphatase That Translocates into Mammalian Cells and Targets Focal Adhesions. EMBO J. 1997, 16 (10), 2730–2744. https://doi.org/10.1093/emboj/16.10.2730.
(80) The PTPase YopH Inhibits Uptake of Yersinia, Tyrosine Phosphorylation of P130Cas and FAK, and the Associated Accumulation of These Proteins in Peripheral Focal Adhesions. EMBO J. 1997, 16 (9), 2307–2318. https://doi.org/10.1093/emboj/16.9.2307.
(81) Black, D. S.; Bliska, J. B. The RhoGAP Activity of the Yersinia Pseudotuberculosis Cytotoxin YopE Is Required for Antiphagocytic Function and Virulence. Mol. Microbiol. 2000, 37 (3), 515–527. https://doi.org/10.1046/j.1365-2958.2000.02021.x.
(82) Portnoy, D. A.; Moseley, S. L.; Falkow, S. Characterization of Plasmids and Plasmid-Associated Determinants of Yersinia Enterocolitica Pathogenesis. Infect. Immun. 1981, 31 (2), 775–782. https://doi.org/10.1128/iai.31.2.775-782.1981.
(83) Rosqvist, R.; Forsberg, Å.; Rimpiläinen, M.; Bergman, T.; Wolf-Watz, H. The Cytotoxic Protein YopE of Yersinia Obstructs the Primary Host Defence. Mol. Microbiol. 1990, 4 (4), 657–667. https://doi.org/10.1111/j.1365-2958.1990.tb00635.x.
(84) Forsberg, A.; Wolf-Watz, H. Genetic Analysis of the YopE Region of Yersinia Spp.: Identification of a Novel Conserved Locus, YerA, Regulating YopE Expression. J. Bacteriol. 1990, 172 (3), 1547–1555. https://doi.org/10.1128/jb.172.3.1547-1555.1990.
(85) Evdokimov, A. G.; Tropea, J. E.; Routzahn, K. M.; Waugh, D. S. Crystal Structure of the Yersinia Pestis GTPase Activator YopE. Protein Sci. Publ. Protein Soc. 2002, 11 (2), 401–408. https://doi.org/10.1110/ps.34102.
(86) Hall, A. Rho GTPases and the Actin Cytoskeleton. Science 1998, 279 (5350), 509–514. https://doi.org/10.1126/science.279.5350.509.
(87) Iriarte, M.; Cornelis, G. R. YopT, a New Yersinia Yop Effector Protein, Affects the Cytoskeleton of Host Cells. Mol. Microbiol. 1998, 29 (3), 915–929. https://doi.org/10.1046/j.1365-2958.1998.00992.x.
(88) Aepfelbacher, M.; Zumbihl, R.; Heesemann, J. Modulation of Rho GTPases and the Actin Cytoskeleton by YopT of Yersinia. In Bacterial Virulence Factors and Rho GTPases; Boquet, P., Lemichez, E., Eds.; Current Topics in Microbiology and Immunology; Springer: Berlin, Heidelberg, 2005; pp 167–175. https://doi.org/10.1007/3-540-27511-8_9.
(89) KEGG PATHWAY: Yersinia infection – Homo sapiens (human) https://www.kegg.jp/kegg-bin/show_pathway?hsa05135 (accessed 2022 -04 -29).
(90) KEGG ENZYME: 2.7.11.1 https://www.genome.jp/entry/2.7.11.1 (accessed 2022 -04 -28).
(91) Monack, D. M.; Mecsas, J.; Ghori, N.; Falkow, S. Yersinia Signals Macrophages to Undergo Apoptosis and YopJ Is Necessary for This Cell Death. Proc. Natl. Acad. Sci. 1997, 94 (19), 10385–10390. https://doi.org/10.1073/pnas.94.19.10385.
(92) Leung, K. Y.; Straley, S. C. The YopM Gene of Yersinia Pestis Encodes a Released Protein Having Homology with the Human Platelet Surface Protein GPIb Alpha. J. Bacteriol. 1989, 171 (9), 4623–4632. https://doi.org/10.1128/jb.171.9.4623-4632.1989.
(93) Leung, K. Y.; Reisner, B. S.; Straley, S. C. YopM Inhibits Platelet Aggregation and Is Necessary for Virulence of Yersinia Pestis in Mice. Infect. Immun. 1990, 58 (10), 3262–3271.
(94) Palmer, L. E.; Hobbie, S.; Galán, J. E.; Bliska, J. B. YopJ of Yersinia Pseudotuberculosis Is Required for the Inhibition of Macrophage TNF-α Production and Downregulation of the MAP Kinases P38 and JNK. Mol. Microbiol. 1998, 27 (5), 953–965. https://doi.org/10.1046/j.1365-2958.1998.00740.x.
(95) Ulevitch, R. J.; Tobias, P. S. Receptor-Dependent Mechanisms of Cell Stimulation by Bacterial Endotoxin. Annu. Rev. Immunol. 1995, 13 (1), 437–457. https://doi.org/10.1146/annurev.iy.13.040195.002253.
(96) KEGG PATHWAY: TNF signaling pathway – Homo sapiens (human) https://www.kegg.jp/pathway/hsa04668+7124 (accessed 2022 -04 -29).
(97) Forsberg, Å.; Viitanen, A.-M.; Skurnik, M.; Wolf-Watz, H. The Surface-Located YopN Protein Is Involved in Calcium Signal Transduction in Yersinia Pseudotuberculosis. Mol. Microbiol. 1991, 5 (4), 977–986. https://doi.org/10.1111/j.1365-2958.1991.tb00773.x.
(98) Sodeinde, O. A.; Sample, A. K.; Brubaker, R. R.; Goguen, J. D. Plasminogen Activator/Coagulase Gene of Yersinia Pestis Is Responsible for Degradation of Plasmid-Encoded Outer Membrane Proteins. Infect. Immun. 1988, 56 (10), 2749–2752.
(99) Sodeinde, O. A.; Subrahmanyam, Y. V. B. K.; Stark, K.; Quan, T.; Bao, Y.; Goguen, J. D. A Surface Protease and the Invasive Character of Plague. Science 1992, 258 (5084), 1004–1007.
(100) Elgat, M.; Ben-Gurion, R. Mode of Action of Pesticin. J. Bacteriol. 1969, 98 (2), 359–367.
(101) Brubaker, R. R.; Surgalla, M. J. PESTICINS II. I and II. J. Bacteriol. 1962, 84 (3), 539–545.
(102) Eisler, D. M.; Heckly, R. J. Possible Mechanisms of Action of an Anti-Pasteurella Pestis Factor1. J. Bacteriol. 1968, 96 (6), 1977–1981.
(103) Molecular and Cellular Biology of Phagocytosis; Hallett, M. B., Ed.; Advances in experimental medicine and biology; Springer: Cham, Switzerland, 2020.